
Chapter 3

The CMAC neural network

3.1 Introduction

This chapter describes the operation of the CMAC neural network. It is largely a tutorial, although the
CMAC’s performance will be analyzed in detail and some new results will be presented. CMAC is an
acronym for Cerebellar Model Articulation Controller1. The CMAC was first described by Albus in 1975
[3, 2] as a simple model of the cortex of the cerebellum (see Chapter2). Since then it has been in and out
of fashion, extended in many different ways, and used in a wide range of different applications. Despite
its biological relevance, the main reason for using the CMAC is that it operates very fast, which makes it
suitable for real-time adaptive control.

The operation of the CMAC will be described in two ways: as a neural network and as a lookup table.
Then the properties of the CMAC will be explored. Comparisons will be drawn between the CMAC and
the multi-layer perceptron (MLP) neural network, which is described in AppendixC. Other information
about CMAC operation can be found in [85] and [123].

3.2 The CMAC

3.2.1 The CMAC as a neural network

The basic operation of a two-input two-output CMAC network is illustrated in figure3.1a. It has three
layers, labeled L1, L2, L3 in the figure. The inputs are the valuesy1 andy2. Layer 1 contains an array of
“feature detecting” neuronszij for each inputyi. Each of these outputs one for inputs in a limited range,
otherwise they output zero (figure3.1b). For any inputyi a fixed number of neurons (na) in each layer 1
array will be activated (na = 5 in the example). The layer 1 neurons effectively quantize the inputs.

Layer 2 containsnv association neuronsaij which are connected to one neuron from each layer
1 input array (z1i, z2j). Each layer 2 neuron outputs 1.0 when all its inputs are nonzero, otherwise it
outputs zero—these neurons compute the logical AND of their inputs. They are arranged so exactlyna
are activated by any input (5 in the example).

Layer 3 contains thenx output neurons, each of which computes a weighted sum of all layer 2

1CMAC is pronounced “see-mac”.
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Figure 3.1: (a) An example two-input two-output CMAC, in neural network form (ny = 2,
na = 5, nv = 72, nx = 2). (b) Responses of the feature detecting neurons for input 1.
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outputs, i.e.:

xi =
∑
jk

wijk ajk (3.1)

The parameterswijk are the weights which parameterize the CMAC mapping (wijk connectsajk to
outputi). There arenx weights for every layer 2 association neuron, which makesnvnx weights in total.

Only a fraction of all the possible association neurons are used. They are distributed in a pattern
which conserves weight parameters without degrading the local generalization properties too much (this
will be explained later). Each layer 2 neuron has a receptive field that isna × na units in size, i.e. this is
the size of the input space region that activates the neuron.

The CMAC was intended by Albus to be a simple model of the cerebellum. Its three layers correspond
to sensory feature-detecting neurons, granule cells and Purkinje cells respectively, the last two cell types
being dominant in the cortex of the cerebellum. This similarity is rather superficial (as many biological
properties of the cerebellum are not modeled) therefore it is not the main reason for using the CMAC in
a biologically based control approach. The CMAC’s implementation speed is a far more useful property.

It is apparent that, conceptually at least, the CMAC deserves to be called a neural network. However,
actual software implementations are much more convenient if the CMAC is viewed as a lookup table.

3.2.2 The CMAC as a lookup table

Figure3.2 shows an alternative table based CMAC which is exactly equivalent to the above neural net-
work version. The inputsy1 andy2 are first scaled and quantized to integersq1 andq2. In this example:

q1 = b15 y1c (3.2)

q2 = b15 y2c (3.3)

as there are 15 input quantization steps between 0 and 1 (noteb·c is the floor function). The indexes
(q1, q2) are used to look up weights inna two-dimensional lookup tables (recall thatna = 5 is the
number of association neurons activated for any input). Each lookup table is called an “association unit”
(AU)—they are labeled AU1. . .AU5 in figure 3.2. The AU tables store one weight value in each cell.
Each AU has cells which arena times larger than the input quantization cell size, and are also displaced
along each axis by some constant. The displacement for AUi along inputyj is dij (the example values
for dij are given in figure3.2). If pij is the table index for AUi along axisyj then, in the example:

pij =

⌊
qj + dij
na

⌋
=

⌊
qj + dij

5

⌋
(3.4)

The CMAC mapping algorithm (based on the table form) is shown in table3.1. Software CMAC im-
plementations never use the neural network form. The CMACHASH function used by the CMACQUAN-
TIZEANDASSOCIATEprocedure takes the AU number and the table indexes and generates an index into
a weight array. Implementations of CMACHASH, and the way the weights are arranged in memory, will
be described later.

The CMAC is faster than an “equivalent” MLP network because onlyna neurons (i.e.na table
entries) need to be considered to compute each output, whereas the MLP must perform calculations for
all of its neurons.
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Figure 3.2: A two input CMAC (table form) equivalent to figure 3.1, na = 5.
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THE CMAC ALGORITHM

Parameters
ny — Number of inputs (integer≥ 1)
nx — Number of outputs (integer≥ 1)
na — Number of association units (integer≥ 1)
dij — The displacement for AUi along inputyj (integer,0 ≤ dij < na)
mini and maxi — Input ranges; the minimum and maximum values foryi (real).
resi — Input resolution; the number of quantization steps for inputyi (integer> 1).
nw — The total number of physical CMAC weights per output.

Internal state variables
µi — An index into the weight tables for association uniti (i = 1 . . . na).
Wj [i] — Weighti in the weight table for outputxj , i = 0 . . . (nw − 1), j = 1 . . . nx.

ALGORITHM: CMACMAP — Maps the CMAC input to its output.
Inputs: y1 . . . yny (scalars)
Outputs: x1 . . . xnx (scalars)
⇒ CMACQUANTIZEANDASSOCIATE(y1 . . . yny ) —this setsµ1 . . . µna

for i← 1 . . . nx —for all outputs
xi ← 0
for j ← 1 . . . na : xi ← xi +Wi [µj ] —for all AUs add table entry toxi

ALGORITHM: CMACQUANTIZEANDASSOCIATE— Get weight table indexes.
Inputs: y1 . . . yny (scalars)
Outputs: µ1 . . . µna (scalars)
⇒ for i← 1 . . . ny —for all inputs

if yi < mini then :yi ← mini —limit yi
if yi > maxi then :yi ← maxi —limit yi

qi ←
⌊
resi

yi −mini
maxi −mini

⌋
—quantize input

if qi ≥ resi then :qi ← resi − 1 —enforce0 ≤ qi < resi
for i← 1 . . . na —for all AUs

for j ← 1 . . . ny : pij ←
⌊
qj + dij
na

⌋
—find tables indexes for all inputs

µi ← CMACHASH (i, pi1, p
i
2, . . . , p

i
ny) —Get weight index for AUi

ALGORITHM: CMACTARGETTRAIN — Train the CMAC output to reach a given target.
(It is assumed that CMACMAP has already been called.)

Inputs: t1 . . . tnx , α (scalars)
⇒ for i← 1 . . . nx

increment← α
ti − xi
na

for j ← 1 . . . na : Wi [µj ]←Wi [µj ] + increment

Table 3.1: The algorithms for computing the CMAC output and training the CMAC.
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3.3 Training

The training process takes a set of desired input to output mappings (training points) and adjusts the
weights so that the global mapping fits the set. It will be useful to distinguish between two different
CMAC training modes:

• Target training : First an input is presented to the CMAC and the output is computed. Then each
of thena referenced weights (one per lookup table) is increased so that the outputsxi come closer
to the desired target valuesti, i.e.:

wijk ← wijk +
α ajk
na

(ti − xi) (3.5)

whereα is the learning rate constant(0 ≤ α ≤ 1). If α = 0 then the outputs will not change. If
α = 1 then the outputs will be set equal to the targets. This is implemented in the CMACTARGET-
TRAIN procedure shown in table3.1.

• Error training : First an input is presented to the CMAC and the output is computed. Then each
of thena referenced weights is incremented so that the output vector[x1 . . . xnx ] increases in the
direction of the error vector[e1 . . . enx ], i.e.:

wijk ← wijk +
α ajk
na

ei (3.6)

This results in a trivial change to the CMACTARGETTRAIN procedure given in table3.1.

Target training causes the CMAC output to seek a giventarget, error training causes it to grow in a given
direction. The input/desired-output pairs (training points) are normally presented to the CMAC in one of
two ways:

• Random order: If the CMAC is to be trained to represent some function that is known beforehand,
then a selection of training points from the function can be presented in random order to minimize
learning interference [122].

• Trajectory order : If the CMAC is being used in an online controller then the training point inputs
will probably vary gradually, as they are tied to the system sensors. In this case each training point
will be close to the previous one in the input space.

3.4 Hashing

3.4.1 The number of CMAC weights

How are the weights in the weight tables stored in the computer’s memory? The naı̈ve approach, storing
each weight as an separate number in a large floating point array, is usually not possible. To see why,
consider the number of weights required for the CMAC parameters given in table3.1. The maximum
value of the table indexpij is (if the largest displacements are assumed):

maximum pij =

⌊
(maximum qj) + (maximum dij)

na

⌋
(3.7)

=
⌊

(resj − 1) + (na − 1)
na

⌋
(3.8)

=
⌊

resj − 2
na

⌋
+ 1 (3.9)
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The total number of CMAC weights is the number of AU tables times the number of weights stored per
AU:

weights in CMAC = na ×
ny∏
j=1

{
maximum pij + 1

}
(3.10)

= na ×
ny∏
j=1

{⌊
resj − 2
na

⌋
+ 2

}
(3.11)

To simplify this, assume that resj is sufficiently large and the same for allj, sopij can be approximated
by

maximum pij ≈
res
na

(3.12)

which gives

weights in CMAC ≈ na

(
res
na

)ny
(3.13)

=
res(ny)

na(ny−1)
(3.14)

There are two things to note about equation3.14. First, increasingna reducesthe number of weights,
even though it increases the number of weight tables. This fact will be used later to try to get a smoother
output from the CMAC.

The second thing to note is that, for typical values of res,na andny the number of weights is huge.
For example, suppose res= 200, na = 10 andny = 6 (these values are not atypical) then the number
of weights is 640 million. At four bytes per floating point number this would require 2441 megabytes of
memory, which is presently unreasonable. The problem is that the number of weights is exponential in
the number of input dimensionsny. One way to reduce the number of weights is to use hashing.

3.4.2 What is hashing?

Hashing is a commonly used technique in computer science [109]. The idea is to take an address into
a large “virtual” memory and map it into an address into a smaller physical memory. For example,
suppose a program is required to quickly store and recall 100 seven digit telephone numbers2. In would
be wasteful and inefficient to use the telephone number as an index into an array of107 entries. Instead
an array of only (say) 251 entries3 could be used, and the index into this array could be computed with

index = (phone number) mod 251 (3.15)

The modulo function hashes the large phone number address into a smaller index in the range0 . . . 250.
This makes more efficient use of memory, but now there is the problem that some of the phone numbers
will hash to the same physical memory location (a problem that gets worse as more numbers that have to
be stored). This is known as “hash collision”. A realistic database program would have to resolve hash
collision using collision lists or secondary probing techniques [109].
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3D input space
2D input space

Figure 3.3: An illustration of how CMAC inputs derived from control processes can tend
to fall along low dimensional surfaces (one and two dimensional examples).

3.4.3 How the CMAC uses hashing

The CMAC uses a hashing scheme to map the large “virtual” weight table address into a smaller physical
one. Hash collisions are ignored—if any two weights with the same physical address are written, the
second one will simply replace the first. Consider using a 100 kilobyte physical memory for the example
above which has a 2441 megabyte virtual memory requirement. In this case almost 25000 virtual weights
would map to a single physical weight, which would seem to hopelessly compromise any training that
was performed.

In practice this is not a problem if the inputs to a CMAC only venture over a fraction of the entire
input space volume, because then only a subset of the virtual weights will be referenced. This is usually
true for inputs that come from physical sensors attached to some controlled process. Sensor values may
be correlated with one another, and the process may only be observed in some fixed modes of operation
(or in limit cycles), which means that only a small subset of all possible input trajectories are seen.
This usually means that the CMAC inputs only lie on a few low dimensional surfaces in the input space
(figure3.3).

The hash collision problem is intolerable if the inputs roam over theentire input space. But if the
CMAC input parameters are correctly chosen then it will be tolerable over the set oflikely inputs. Thus
the benefit of hashing is that it allows the relatively small number of physical weights to be allocated
where they are neededin the input space.

Hash collisions are manifested as noise in the CMAC output. As a larger volume of the input space
is used, more hash collisions will be experienced, the CMAC output will get noisier and it will be harder
to get the CMAC to retain the training data.

3.4.4 CMAC hashing algorithms

A CMAC hashing algorithm (CMACHASH) generates a physical weight table indexi from the AU num-
berj and the tables indexespj1, p

j
2, . . . , p

j
ny (from table3.1), i.e.

i = fh
(
fv(p

j
1, p

j
2, . . . , p

j
ny), j

)
—variant 1 (3.16)

2Any programmer can think of many ways to tackle this problem (e.g. linked lists and binary trees) but only hashing is
interesting here.

3251 is a prime number. Prime numbers have been shown to be particularly good with the modulo hash function [109].
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(a) (b)

overlap

Figure 3.4: When hashing is used, a single physical weight influences multiple virtual
weights, resulting in disjointed “basis functions” — (a) shows an example of variant 1 hash-
ing (AU number hashed) and (b) shows an example of variant 2 (AU number not hashed).
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Figure 3.5: This is what happens when variant-2 hashing does not hash on the AU index
(the trajectory intersects two hash-collision clusters).

or i = fh
(
fv(p

j
1, p

j
2, . . . , p

j
ny), j

)
+ np j —variant 2 (3.17)

wherefv is a function that generates a unique virtual address (0 . . . nv−1) from the weight table indexes,
andfh is a hashing function that produces a physical address (0 . . . np − 1). A single physical weight
will control multiple virtual weights, as shown in figure3.4—this set is called the basis function for that
weight4. Figure3.4a shows how variant 1 hashes on the AU index, so a basis function can have weights
in multiple AUs. Thus the basis function can have overlapping AU cells. Figure3.4b shows how variant
2 uses the AU indexj to index a separatenp-sized area for each AU, ensuring that each basis function
contains only cells from a single AU.

Variant 2 must also hash on the AU indexj, because otherwise the basis functions for corresponding
weights in each AU will have the same pattern. Consider figure3.5, which shows what can happen when
variant 2 hashing does not include the AU index. Basis functions localized in more than one useful area
of the input space are clustered together, so training performed at point 1 will cause points 1 and 2 to
change by the same amount. If the AU index is included in the hash function then the hash collisions will

4This terminology is not strictly correct, mathematically speaking.
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be widely distributed, so the training effect at point 2 will have only1/na of the full effect. Either variant
will work, but it will be seen later that variant 2 makes some aspects of the FOX algorithm simpler.

There are numerous choices forfv and fh. The major requirements are thatfv should produce
a different index for every virtual weight, andfh should not result in a physical weight having some
systematic pattern of virtual weights that will lead to greater than expected hash collisions (i.e. the more
“random” the hash function is the better).

Two examples offv are shown in table3.2, one suited for software implementation and the other for
hardware. Two examples offh are shown in figure3.6.

3.5 Properties of the CMAC

3.5.1 Limited input space

Each CMAC input has a minimum and maximum value, beyond which the weight tables do not hold any
weight values. Thus the designer needs to know beforehand what the probable input ranges are. The
mapping algorithm in table3.1clamps the inputs to be between the minimum and maximum values. The
CMAC will not perform as expected if the input goes outside this valid range, but valid weight table
indexes will still be generated.

3.5.2 Piecewise constant

The CMAC input to output mapping is piecewise constant because of the quantized input. In other words
the mapping contains many discontinuous steps. This may seem likely to result in a poor mapping,
but in fact it is not a great disadvantage in many applications. If the input resolutions are chosen to be
large enough then the discontinuities will be small. There is a trade off, however, because more input
resolution results in a larger virtual weight space.

3.5.3 Local generalization

The concept of generalization is explained in AppendixA. In contrast to the multi-layer perceptron
(MLP), the CMAC haslocal generalization (LG). This means that when each data point is presented to
the CMAC training algorithm, only a small region of the mapping around that point is adjusted. This
occurs, of course, because only the weights which affect the output are adjusted, and each of those
weights can only influence a small area of the mapping. Hashing increases the area that each physical
weight influences, but this does not count as generalization as it is unpredictable. Figure3.7 shows a
possible result of one CMAC training iteration forα = 1.

Local generalization can also be regarded as interpolation. The interpolation capabilities of the binary
CMAC are explored further in [22].

3.5.4 Training sparsity

To ensure good generalization, how far apart (in the input space) can the training points be in trajectory-
ordered data? Figure3.8shows the CMAC mapping that results from training with sparse data, ranging
from 6 to 21 training points spaced evenly between zero and one. In each case the training was performed
on each training point in turn with a learning rateα = 0.1, repeating this until convergence was achieved.
This CMAC had 100 quantization steps in the [0,1] interval andna = 10, so the LG area had 20% of the
[0,1] interval width.
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ALGORITHMS TO COMPUTE VIRTUAL ADDRESS ( fv)

Purpose
Compute a virtual address for weight table indexespj1, p

j
2, . . . , p

j
ny .

ALGORITHM 1 (software)
Definitions

rk =
⌊

resk − 2
na

⌋
+ 2 — the number of different values ofpjk.

Inputs: pj1, p
j
2, . . . , p

j
ny .

Output : h—A virtual address in the range0 . . .

( ny∏
k=1

rk

)
− 1

⇒ h← 0
for i← 1 . . . ny

h← h ri + pji

ALGORITHM 2 (hardware)
Inputs: pj1, p

j
2, . . . , p

j
ny .

Output : h—A virtual address.
⇒ Insert the indexespj1 . . . p

j
ny directly into a hardware register:

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

h

b1 bits

pj1

bny bits

pjny

b1 . . . bny are such that2bi ≥ ri.

Table 3.2: Two algorithms for computing a virtual weight address from the weight table
indexes.
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Here is a highly effective hash function in C, adapted from [100]. It does a pseudo-DES hashing of the
two 32 bit arguments to a 32 bit result. The argumentvirtual is the virtual address returned byfv
(it must have a maximum value less than232), au num is the association unit number, andpbits is
the number of bits to allow in the physical address (0 . . . 31). This does a much better job of nonlinear
pseudo-random bit mixing than some other hash functions (like mod-prime or linear congruential) but
at the expense of speed (it’s still pretty quick, though).

unsigned long pdes_hash (unsigned long virtual, unsigned long au_num,
int pbits)

{
unsigned long i,ia,ib,iswap,itmph=0,itmpl=0;
static unsigned long c1 [4] = {

0xbaa96887L,0x1e17d32cL,0x03bcdc3cL,0x0f33d1b2L};
static unsigned long c2 [4] = {

0x4b0f3b58L,0xe874f0c3L,0x6955c5a6L,0x55a7ca46L};
/* Perform 4 iterations of DES logic, using a simpler */
/* (non-cryptographic) nonlinear function instead of DES’s. */
for (i=0; i<4; i++) {

ia = (iswap=au_num)ˆc1[i];
itmpl = ia & 0xffff;
itmph = ia >> 16;
ib = itmpl*itmpl + ˜(itmph*itmph);
au_num = virtualˆ(((ia=(ib>>16)|((ib&0xffff)<<16))ˆc2[i])+

itmpl*itmph);
virtual = iswap;

}
/* Chop off the lower ‘pbits’ bits of the hashed value */
return virtual & ((1 << pbits)-1);

}

This hash function is particularly useful for hardware CMAC implementations. The weight table in-
dexes and the AU numberj are loaded into a linear feedback shift register [100] which is then shifted
sufficiently to scramble the bits. The physical address is taken as some subset of the shift register bits.
Enough shifts must be performed so that each original bit affects a number of bits in the physical address.
See [54] for further information.

pj1j

Physical address

pjny

Figure 3.6: Some hashing algorithms.
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y1
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Training point

Hash collisions

0

Local generalization area

Figure 3.7: An example CMAC output after one training iteration starting from zero (na =
5).

For points where the LG regions don’t overlap (the graphs of 5 and 6 points) the mapping is a
series of triangular bumps. As the points get closer together (7,8,9,10 points) the regions between them
become better interpolated, until at 11 points the LG regions overlap exactly and the inter-point spaces
are linearly interpolated—this is a reasonably good mode of generalization. As the training points get
closer still (12,13,. . .) the inter-point spaces are no longer linearly interpolated, but the error there remains
relatively small. Linear interpolation is achieved again at 21 points. Obviously, better generalization is
achieved if the training points are closer together.

The bottom three graphs in figure3.8 show the same CMAC after training with 10, 100 and 1000
randomly positioned points in the interval [0,1] (α = 0.5). 10 points is too few to get a good approxi-
mation withα < 1. The approximation becomes smoother with more training points because the points
tend to be closer together. Note the region on the left of the 100 point graph where the lack of training
points causes a small interval of large error.

In conclusion, for a small number of fixed training points the generalization performance is inferior
to the MLP, as the inter-point regions are hardly ever perfectly interpolated. As the inter-point space
decreases below the size of the LG region, the generalization becomes better. For a large number of
“randomly” spaced training points (perhaps generated by some function or process) the CMAC is a good
functional approximator.

3.5.5 Training interference

Consider training a CMAC at two points, first A then B, with some learning rateα. If point B is within
the LG area of point A it can make the mapping error at point A worse. This effect is called training
interference.

Figure3.9 shows the cause of the problem. If points A and B have overlapping LG areas then they
share some weights (v weights in the figure). Training at B will affect the value ofxA becausev of its
na weights will be altered. If the “training interference” is defined to be the degree of influence overxA
that training at B has then:

training interference (%) =
v

na
× 100% (3.18)

If v = 0 then there is obviously no interference (because there is no overlap) and ifv = na then A
and B are the same point and the interference is maximized. This can be particularly problematic during
trajectory training, because then successive training points are very likely to be close to each other. The
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Figure 3.8: Top four rows: the CMAC mapping resulting from training with sparse data,
ranging from 6 to 21 training points spaced evenly between zero and one (marked with ◦’s).
Bottom row: the CMAC mapping resulting from training with 10, 100 and 1000 randomly
positioned points (input positions marked with ×’s, α = 0.5). In both cases there are 100
quantization steps in the [0,1] interval, na = 10 and the training target for input y is sin 2πy.
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Figure 3.9: The CMAC outputs for two different inputs that are within each other’s local
generalization areas.

problem can be reduced with a lower learning rate. This effect is further explored in [122] for different
training techniques.

3.5.6 Multidimensional inflexibility

A single input CMAC has enough weight parameters so that it can generate an independent output for
each quantized input. In standard CMACs with more than one input this can not be done, because (as
shown in figure3.1) the association neurons (or weight table entries) are distributed rather sparsely in the
quantized input space.

However, it was said above that forna weight tables, the table cell size wasna times as coarse
as the quantized input cells—but this is merely a convention, not a requirement, and so there could be
nT weight tables with a cell size that isnc times coarser than the input cells. These tables would still
have to be displaced from each other (because if two tables are perfectly aligned then one is redundant).
The pattern of displacement is given in a displacement diagram (an example is shown in figure3.2).
Figure3.10 shows some other displacement diagrams, along with their local generalization areas and
association neuron layouts. In practice,nc = nT = na is almost always used.

Figure3.10c is fully populated, and so it is capable of representing a different output for each input
cell, but normally this flexibility is not required. To reduce the number of weights, sparser distributions
like figure 3.10a or figure3.10b are commonly used. The displacement table should have at least one
entry for each row and column. Figure3.10b shows the simplest arrangement (dij = i) which was
suggested by Albus [2] and has been commonly used.

3.5.7 Comparison with the MLP

To represent a given set of training data the CMAC normally requires more parameters than an MLP.
The CMAC is often over-parameterized for the training data, so the MLP has a smoother representation
which ignores noise and corresponds better to the data’s underlying structure. The number of CMAC
weights required to represent a given training set is proportional to the volume spanned by that data in
the input space.

The CMAC can be more easily trained on-line than the MLP, for two reasons. First, the training
iterations are fast. Second, the rate of convergence to the training data can be made as high as required, up
to the instant convergence ofα = 1 (although such high learning rates are never used because of training
interference and noise problems). The MLP always requires many iterations to converge, regardless of
its learning rate.
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Figure 3.10: Some example CMAC displacement diagrams and how they affect the local
generalization area and association neuron layout.

3.6 Design decisions

3.6.1 Input issues

When training with trajectory data, the input resolutions andna should be chosen to ensure that there is
no training sparsity, i.e. so that successive training points are within the LG area of each other.

It can be useful to apply some function to an input before presenting it to the CMAC. These func-
tions normally compress or expand the input space in certain areas so that the mapping detail can be
concentrated where it is needed. A common choice is some variant of the sigmoid function

f(x) =
1

1 + e−x
(3.19)

3.6.2 Overlay displacements

There are two common choices when choosing the overlay displacement valuesdij :

1. Choosedij = i which means that the AU tables are aligned along a hyperdiagonal in the input
space. This is reasonably effective and particularly easy, especially for hardware CMAC imple-
mentations.

2. Choose thedij to get AU clustering that is optimal in some sense. For example, Parks and Militzer
([94] and [21, appendix B]) computed overlay displacement tables forna up to 100 andny up to
fifteen, such that the minimum hamming distance between any two overlay displacement vectors
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is maximized. It was found that particularly good overlay displacements are achieved whenna is
prime and equal to2ny + 1, and bad overlay displacements are achieved whenna is divisible by 6.

3.6.3 Hashing performance

Hash collisions limit the CMAC mapping accuracy. This problem will now be analyzed quantitatively.
LetV be the fraction of the input space hypercube that contains the set of likely CMAC inputs. Note that
this includes the local generalization area around that set (so one dimensional trajectories occupy a finite
volume). Once the CMAC is trained, hashing will cause the area outsideV to map to random noise.
Define the “noise factor” to be:

noise factor
4
= virtual weights mapped to each physical weight (3.20)

=
V · (virtual weights)
(physical weights)

(3.21)

=
V · res(ny)

n
(ny−1)
a nw

(from equation3.14) (3.22)

The noise factor for a particular configuration limits the accuracy which the CMAC mapping can achieve.
Higher noise factors mean that more hash collision noise can be expected. For example, figure3.11
shows a single-input single-output CMAC trained on a simple target function using 10,000 random train-
ing points andα = 0.3. The graphs show the result for four different numbers of physical weights, with
less weights giving a higher noise factor and a poorer mapping.

Suppose that the input trajectory is one dimensional and of length`, and that the input space hyper-
cube has side lengths. Then

V =
` · (trajectory width)ny−1

sny
(3.23)

=
` ·
(
na

s
res
)ny−1

sny
(3.24)

Which gives the following noise factor:

noise factor =
`

s
· res
nw

(3.25)

Note that this is independent ofna andny, so for this ideal case the designer is free to choose those
parameters based on other considerations.

The noise factor is not a very useful concept in practice, becauseV is hardly ever known beforehand—
it is completely dependent on the system in which the CMAC is used. In many circumstances it is better
to use a trial and error method to determine good CMAC parameters. Some reasonable CMAC param-
eters are initially chosen, and if the CMAC output is too noisy then the number of weights orna is
increased, or the input resolution is reduced. Computer memory is cheap, so in many situations it is
acceptable to initially use far more weights than are really needed.

3.6.4 Number of AUs

As na is increased, the number of parameters controlling the CMAC mapping is reduced. A single
input CMAC has at least as many virtual weights as there are quantized input cells, so it is capable of
representing any function. But standard multiple input CMACs do not have this property, so asna is
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x1 = sin 6y1 + cos 8y1, and na = 10.
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increased the mapping flexibility is reduced. Figure3.12demonstrates what happens with two inputs.
The top left graph is the target function—notice that it has a step discontinuity. The others graphs show
CMAC mappings forna =10, 40 and 70 (these were trained using 10,000 random training points and
α = 0.3).

A higherna makes the mapping less accurate—for example it is less able to track quick variations.
These inaccuracies are not the result of hash collisions (The number of weights was set to220 in this
example to prevent that). With less parameters, the mapping is simply more constrained by the CMAC
architecture. This can be useful to ensure a certain degree of “smoothness” in the CMAC output to com-
pensate for an underconstraining training process. Note however that the CMAC can always perfectly
represent training points along anyone-dimensionaltrajectory, even for a high-dimensional CMAC.

3.6.5 Weight smoothing

As shown in figure3.8, even if training points are closer together than the LG distance, perfect linear
interpolation may not be achieved. A useful technique called “weight smoothing” was developed by the
author to correct this problem, although it was never used in any application. After each training iteration
thena indexed weights are adjusted according to

for j ← 1 . . . na : Wi[µj ] ← (1− αn)Wi[µj ] +
αn
na

na∑
k=1

Wi[µk] (3.26)

In other words, each weight is moved towards the average of all the weights by an amount proportional
to αn. Repeated training with a small value ofαn distributes the weight more evenly, reducing the gaps
between the largest and smallest weights.

Figure3.13shows the effects. These graphs were generated the same way as in figure3.8, but the
weight smoothing training algorithm was used. The top four rows, which useαn = 0.01, show that
points closer than the LG distance are almost perfectly linearly interpolated. The bottom row, which
usesαn = 0.2, show some benefit as well. The 100 point graph has a smaller error than figure3.8 in
the region where the training points are sparse. But there is a slight negative side-effect: the 1000 point
graph shows a slight distortion from the desired function.

3.7 Extensions

Many modifications and extensions have been made to the basic CMAC concept. For example:

• Lane, Handelman and Gelfand [63] describe “higher order” CMAC networks. In these networks
the layer 1 feature detecting neuron outputs5 respond withn’th order spline functions (e.g. tri-
angular or cubic) instead of just a binary 0/1, although the region of nonzero activation is still
bounded the same way. With careful selection of the spline parameters, the CMAC mapping be-
comes smooth with analytical derivatives. Higher order CMAC networks can be chained together
in multi-layer and hierarchical architectures that can be trained using conventional backpropa-
gation techniques. However, they can require more weight parameters than a binary CMAC to
achieve a given level of accuracy.

• Brown and Harris [21] provide a unified description which links the CMAC to related neural
and fuzzy networks, including the B-spline network. They analyze the common features of these

5Refer to figure3.1b.
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Figure 3.13: This shows the same results as figure 3.8, but the weight smoothing training
algorithm has been used. The top four rows use αn = 0.01, and the bottom row uses
αn = 0.2.
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networks (such as local learning and interpolation) and compare them on a number of benchmark
problems.

• Adaptive encoding of the CMAC inputs has been used to focus the representational detail on hard-
to-model areas of the input space [33].

• There have been several efforts at CMAC hardware implementation, for example [54] which uses
programmable logic devices. Hardware is less advantageous for the CMAC than it is for other
neural network architectures, because the CMAC is so fast in software. The most difficult hardware
design aspect is usually the hashing algorithm. Solutions like that in table3.2are typically used.

3.8 Conclusion

The CMAC neural network has the following advantages:

• The mapping and training operations are extremely fast. The time taken is proportional to the
number of association units.

• The algorithms are easy to implement.

• Local generalization prevents over-training in one area of the input space from degrading the map-
ping in another (unless there are too few physical weights).

It has the following disadvantages:

• Many more weight parameters are needed than for, say, the multi-layer perceptron.

• The generalization is not global, so useful interpolation will only occur if there are enough training
points—points further apart than the local generalization distance will not be correctly interpolated.

• The input-to-output mapping is discontinuous, without analytical derivatives, although this can be
remedied with higher order CMACs [63].

• Selection of CMAC parameters to prevent excessive hash collision can be a large design problem.
If there are a limited number of physical weights available then it is difficult to do without knowl-
edge of the input signal coverage, so trial-and-error must usually be used. If physical weights are
plentiful then it is acceptable to use far more than are really necessary and not worry about hash
collisions.

Despite these problems, the CMAC is extremely useful in real-time adaptive control because of its speed.
Far greater processing power would be required when using, say, an MLP network where every weight
is involved in every mapping and training operation.

The next chapter will show how the CMAC can be used as the adaptive component in a simple
“feedback-error” control system, and the chapter after that will show how the CMAC can be extended to
make the FOX controller, which can be used to solve some problems that are beyond the capabilities of
feedback-error.
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